SKKN: TẠO VÀ SỬ DỤNG NGÂN HÀNG HÌNH VẼ POWERPOINT VỀ TÍNH CHẤT CỦA ĐƯỜNG VÀ ĐIỂM TRONG TAM GIÁC NHẰM GIẢI QUYẾT MỘT SỐ BÀI TOÁN TỌA ĐỘ PHẲNG KHÓ LẤY ĐIỂM 8, ĐIỂM 9 CỦA KỲ THI THPT QUỐC GIA - TRƯỜNG ĐẠI HỌC Y KHOA VINH

Tìm thấy 10,000 tài liệu liên quan tới tiêu đề "SKKN: Tạo và sử dụng ngân hàng hình vẽ powerpoint về tính chất của đường và điểm trong tam giác nhằm giải quyết một số bài toán tọa độ phẳng khó lấy điểm 8, điểm 9 của kỳ thi THPT quốc gia - Trường Đại Học Y Khoa Vinh":

Sáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh Hóa

Sáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh Hóa

Sáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh HóaSáng kiến kinh nghiệm, SKKN - Sử dụng các tính chất trong hình học phẳng để giải một số bài toán trong đề thi tốt nghiệp THPT quốc gia và thi HSG tỉnh Thanh Hóa
Xem thêm

Đọc thêm

TẢI ĐƯỢC 15-21 ĐIỂM KỲ THI THPT QUỐC GIA 2020, NÊN ĐĂNG KÝ TRƯỜNG NÀO? - TƯ VẤN CHỌN TRƯỜNG ĐẠI HỌC, CAO ĐẲNG NĂM 2020

TẢI ĐƯỢC 15-21 ĐIỂM KỲ THI THPT QUỐC GIA 2020, NÊN ĐĂNG KÝ TRƯỜNG NÀO? - TƯ VẤN CHỌN TRƯỜNG ĐẠI HỌC, CAO ĐẲNG NĂM 2020

Mức điểm 15-21 không phải là điểm số cao trong kỳ thi Đại học, THPT Quốc Gia, tuy nhiên, với mức điểm này, các em hoàn toàn có cơ hội trúng tuyển vào một số trường Đại học, Cao đẳng có c[r]

Đọc thêm

SKKN: HƯỚNG DẪN HỌC SINH KHAI THÁC TÍNH CHẤT HÌNH HỌC ĐỂ GIẢI BÀI TOÁN VỀ TAM GIÁC TRONG HÌNH HỌC TỌA ĐỘ PHẲNG

SKKN: HƯỚNG DẪN HỌC SINH KHAI THÁC TÍNH CHẤT HÌNH HỌC ĐỂ GIẢI BÀI TOÁN VỀ TAM GIÁC TRONG HÌNH HỌC TỌA ĐỘ PHẲNG

Đề tài: “Hướng dẫn học sinh khai thác tính chất hình học để giải bài toán về tam giác trong hình học tọa độ phẳng ” cùng quá trình ôn luyện cho học sinh, tôi mong muốn giúp học sinh định hướng và khai thác tốt tính chất hình học cũng như tìm được tính chất hình học ẩn trong bài toán để giải quyết được bài toán về tam giác, từ đó các em có thể giải quyết được các bài toán tọa độ phẳng nói chung, giúp các em có thể đạt kết quả cao trong kỳ thi THPT quốc gia và nâng cao hơn nữa chất lượng dạy học Toán.
Xem thêm

Đọc thêm

ôn tập 10 hk 2

ÔN TẬP 10 HK 2

Bài 2. Cho phương trình . ( m + 2) x 2 − 2(3 m − 1) x m + − = 2 0 a/ Chứng tỏ rằng phương trình luôn có nghiệm với mọi m. b/ Tìm m để phương trình có hai nghiệm dương phân biệt.
Bài 3. Điều tra số học sinh đọc sách tại thư viện ở 40 lớp của một trường THPT, người ta đã thu được số liệu sau .

2 Đọc thêm

SÁNG KIẾN KINH NGHIỆM: PHÉP ĐỐI XỨNG TRỤC TRONG MỘT SỐ BÀI TOÁN VỀ PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

SÁNG KIẾN KINH NGHIỆM: PHÉP ĐỐI XỨNG TRỤC TRONG MỘT SỐ BÀI TOÁN VỀ PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Sáng kiến kinh nghiệm này nhằm mục đích tìm ra phương pháp dạy học phù hợp với học sinh trường THPT. Làm cho học sinh hiểu, dễ nhớ và vận dụng được các tính chất của hình học phẳng vào giải quyết các bài toán về tọa độ trong mặt phẳng. Học sinh tìm được mối liên hệ giữa các tính chất của phép đối xứng trục với các tính chất hình học phẳng, với bản chất hình học của bài toán tọa độ trong mặt phẳng.

Đọc thêm

Sáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳng

Sáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳng

Sáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳngSáng kiến kinh nghiệm, SKKN - Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳng
Xem thêm

Đọc thêm

Sáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳng

Sáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳng

Sáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳngSáng kiến kinh nghiệm, SKKN - Phát hiện và giải quyết vấn đề trong bài toán hình giải tích từ những mối quan hệ giưã các điểm, điểm và đường thẳng
Xem thêm

Đọc thêm

Các dạng toán vectơ thường gặp – Nguyễn Bảo Vương | Toán học, Lớp 10 - Ôn Luyện

Các dạng toán vectơ thường gặp – Nguyễn Bảo Vương | Toán học, Lớp 10 - Ôn Luyện

2
a  b  .
Câu 115. Trong mặt phẳng tọa độ Oxy cho điểm M  3;1  . Giả sử A a  ; 0  và B  0; b  (với , a b là các số thực không âm) là hai điểm sao cho tam giác MAB vuông tại M và có diện tích nhỏ nhất. Tính giá trị biểu thức T  a 2  b 2 .

Đọc thêm

ÔN TẬP CHƯƠNG 1

ÔN TẬP CHƯƠNG 1

Nhằm ôn lại toàn bộ kiến thức đã học về vectơ và các tính chất của nó. 2/Về kỉ năng : Biết vận dụng các tính chất đó trong việc giải các bài toán hình học. 3/ Về tư duy :Vận dụng một số công thức về toạ độ để làm một số bài toán hình học phẳng. Tính khoảng cách giữa hai điểm, chứng minh ba điểm thẳng hàng … 4/Về Thi Độ :: Học sinh ôn tập kĩ các dạng toán để làm tốt các bài kiểm tra. ...

Đọc thêm

Lượng giá kỹ năng giao tiếp của sinh viên y khoa năm thứ tư tại đơn vị huấn luyện kỹ năng y khoa

Lượng giá kỹ năng giao tiếp của sinh viên y khoa năm thứ tư tại đơn vị huấn luyện kỹ năng y khoa

Nghiên cứu này nhằm xem xét giá trị của công cụ lượng giá được sử dụng trong việc lượng giá kỹ năng giao tiếp của sinh viên y khoa năm thứ tư tại Đơn vị Huấn luyện kỹ năng y khoa. 120 sinh viên y khoa năm thứ tư tại Đại học Y Dược TP Hồ Chí Minh tham dự kỳ thi thường kỳ cuối đợt huấn luyện kỹ năng giao tiếp tại Đơn vị Huấn luyện kỹ năng y khoa thường lệ. Buổi giao tiếp này được quay video, các đoạn phim này sau đó được chấm lại sử dụng phiếu chấm điểm MAAS-Global. Kết quả cho thấy tất cả sinh viên đều đạt trong kỳ thi thường kỳ với điểm trung bình là 6,7/10.
Xem thêm

Đọc thêm

MỘT SỐ TÍNH CHẤT CỦA MÔĐUN PHẲNG

MỘT SỐ TÍNH CHẤT CỦA MÔĐUN PHẲNG

Cũng trong ch-ơng này, chúng tôi trình bày một số tính chất của môđun phẳng và môđun hoàn toàn phẳng.. Luận văn này được thực hiện tại trường Đại học Vinh, dưới sự hướng dẫn của TS.[r]

35 Đọc thêm

Giáo án Toan 10 Hình học cơ bản trọn bộ

GIÁO ÁN TOAN 10 HÌNH HỌC CƠ BẢN TRỌN BỘ

Rốn luyệ kỹ năng ỏp dụng ptrỡng đường thẳng, dường HSn và elip để giải 1 số bài toỏn cơ bản của hỡnh học như tỡm giao điểm, tớnh khoảng cỏch, vị trớ tương đối giữa 2 đường thẳng….
Về tư duy: Bước đầu hiểu được việc Đại số húa hỡnh học
Hiểu được ccỏch chuyển đổi từ hỡnh học tổng hợp sang tọa độ. Về tỏi độ: cẩn thận , chớnh xỏc.

57 Đọc thêm

Tọa độ phẳng trong toán học

TỌA ĐỘ PHẲNG TRONG TOÁN HỌC


Trong mặt phẳng Oxy cho ba điểm A(2, –1), B(0, 3), C(4, 2). a) Tìm tọa độ điểm D đối xứng với A qua B.
b) Tìm tọa độ điểm M để 2 AM JJJJG + 3 BM JJJJG - 4 CM JJJJG = 0 G
c) Tìm tọa độ điểm E để ABCE là hình thang có một cạnh đáy là AB và E nằm trên Ox.

5 Đọc thêm

Toán học - Chuyên đề 1: Tọa độ phẳng

Toán học - Chuyên đề 1: Tọa độ phẳng

TỌA ĐỘ PHẲNG Trong các bài toán về tọa độ trong mặt phẳng thường gặp các yêu cầu như tìm tọa độ một điểm, một vectơ, tính độ dài một đoạn thẳng, số đo góc giữa hai vectơ, quan hệ cùng ph[r]

Đọc thêm

TOAN 10

TOAN 10

Rốn luyệ kỹ năng ỏp dụng ptrỡng đường thẳng, dường HSn và elip để giải 1 số bài toỏn cơ bản của hỡnh học như tỡm giao điểm, tớnh khoảng cỏch, vị trớ tương đối giữa 2 đường thẳng….
Về tư duy: Bước đầu hiểu được việc Đại số húa hỡnh học
Hiểu được ccỏch chuyển đổi từ hỡnh học tổng hợp sang tọa độ. Về tỏi độ: cẩn thận , chớnh xỏc.

57 Đọc thêm

Chuyên đề 1: Tọa độ phẳng

Chuyên đề 1: Tọa độ phẳng

TỌA ĐỘ PHẲNG Trong các bài toán về tọa độ trong mặt phẳng thường gặp các yêu cầu như tìm tọa độ một điểm, một vectơ, tính độ dài một đoạn thẳng, số đo góc giữa hai vectơ, quan hệ cùng ph[r]

Đọc thêm

10 DE THI THU SAT VOI DE THI THAT

10 DE THI THU SAT VOI DE THI THAT

THỊ CỦA BGD NÊN NHỮNG ĐÈ THỊ THÂY TỎNG HỢP NÀY CÓ TÍNH CHẤT CỰC QUAN
TRỌNG. MỨC ĐỘ, SỰ PHÂN BÓ ( CÓ 2 KIỂU: KIỂU 1 THEO TỪNG CHƯƠNG, KIỂU 2 LÀ LẦN LỘN GIỮA CÁC CHƯƠNG ) CỦA CÁC CÂU HỎI TRONG 10 ĐÈ THẦY RA NÀY ĐÃ ĐƯỢC SỰ
THAM VẬN CỦA “ NHŨNG NGUÔN TIN RẤT ĐÁNG TIN CẬÂY MÀ THY CÓ ĐƯỢC“. CHÍNH VÌ VẬY MÀ THÂY MONG RẰNG, TRONG 10 NGÀY CÒN LẠI NÀY CHÚNG TA GIẢI QUYEẼT THẬT TÓT CÁC ĐÈ THI NÀỴ VỚI CÁC ĐỀ NÀY ĐẠT ĐƯỢC MỨC ĐIÉM 8- 9 LÀ YÊN TÂM ĐI THỊ RỒỊ LỊCH TRÌNH TRONG NHỮNG NhP cÒÑ tà ý n { U Â N
Xem thêm

264 Đọc thêm

HÌNH HỌC GIẢI TÍCH: TOẠ ĐỘ PHẲNG

HÌNH HỌC GIẢI TÍCH: TOẠ ĐỘ PHẲNG

TRANG 1 _CHUYÊN ĐỀ 1 _ TỌA ĐỘ PHẲNG Trong các bài toán về tọa độ trong mặt phẳng thường gặp các yêu cầu như tìm tọa độ một điểm, một vectơ, tính độ dài một đoạn thẳng, số đo góc giữa hai[r]

5 Đọc thêm

 BÀI TOÁN VỀ TỌA ĐỘ TRONG MẶT PHẲNG

BÀI TOÁN VỀ TỌA ĐỘ TRONG MẶT PHẲNG

TRANG 1 _CHUYÊN ĐỀ 1 _ TỌA ĐỘ PHẲNG Trong các bài toán về tọa độ trong mặt phẳng thường gặp các yêu cầu như tìm tọa độ một điểm, một vectơ, tính độ dài một đoạn thẳng, số đo góc giữa hai[r]

5 Đọc thêm

HÌNH HỌC GIẢI TÍCH 9

HÌNH HỌC GIẢI TÍCH 9

TRANG 1 _CHUYÊN ĐỀ 1 _ TỌA ĐỘ PHẲNG Trong các bài toán về tọa độ trong mặt phẳng thường gặp các yêu cầu như tìm tọa độ một điểm, một vectơ, tính độ dài một đoạn thẳng, số đo góc giữa hai[r]

5 Đọc thêm