CHỨNG MINH BẤT ĐẲNG THỨC COSI VỚI 3 SỐ

Tìm thấy 10,000 tài liệu liên quan tới từ khóa "CHỨNG MINH BẤT ĐẲNG THỨC COSI VỚI 3 SỐ":

CHUYÊN ĐỀ CHỨNG MINH BẤT ĐẲNG THỨC MỘT BIẾN NGUYỄN MINH TUẤN

CHUYÊN ĐỀ CHỨNG MINH BẤT ĐẲNG THỨC MỘT BIẾN NGUYỄN MINH TUẤN

Nhận xét.Ở trên tïi cî nêu lên 2 bổ đề mà nhiều ngƣời đọc sẽ chẳng hiểu đƣợc kiếm đâu ra. Sauđây tïi xin trënh bày các bƣớc làm.Page 9Chuyên đề chứng minh bất đẳng thức một biến1. Dễ kiểm tra thấy f  x   0 nên nî sẽ cî giá trị nhỏ nhất, việc của ta là tëm đƣợc khi xbằng bao nhiêu t[r]

40 Đọc thêm

CHỨNG MINH BẤT ĐẲNG THỨC AMGM.

CHỨNG MINH BẤT ĐẲNG THỨC AMGM.

Trích trong Kỷ yếu Gặp gỡ Toán học 2015.AMGM là một bất đẳng thức vô cùng phổ biến, được áp dụng rất rộng rãi trong nhiều cấp học, là một công cụ toán học tuyệt vời. Chính vì thế mà mặc dù đã có cách chứng minh bất đẳng thức này, nhiều cá nhân vẫn luôn tìm tòi một lối đi mới.Khác với những kiến thứ[r]

2 Đọc thêm

ĐỔI BIẾN TRONG CHỨNG MINH BẤT ĐẲNG THỨC

ĐỔI BIẾN TRONG CHỨNG MINH BẤT ĐẲNG THỨC

Đối với học sinh trung học cơ sở, việc chứng minh một bất đẳng thức thường có rất ít công cụ, học sinh chủ yếu sử dụng định nghĩa hoặc sử dụng các bất đẳng thức cổ điển để chứng minh. Tuy nhiên việc sử dụng các bất đẳng thức cổ điển đó để chứng minh các bài toán khác trong đa số các trường hợp yêu c[r]

37 Đọc thêm

 PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

---NGUYỄN ANH CƯỜNG ---A. Lời giới thiệuMột lần nữa tôi lại có dịp gặp lại các bạn với một phương pháp chứng minh bất đẳng thức mới. Nếu nhưphương pháp chính phương hoá đã khơi dậy trong ta bao nhiêu sự thích thú và thỏa thuê khi hàng trăm bàibất đẳng thức khó đã ngã rạp trước sức mạnh[r]

10 Đọc thêm

Sáng kiến kinh nghiệm: Chứng minh bất đẳng thức bằng phương pháp đạo hàm

SÁNG KIẾN KINH NGHIỆM: CHỨNG MINH BẤT ĐẲNG THỨC BẰNG PHƯƠNG PHÁP ĐẠO HÀM

Sáng kiến kinh nghiệm: Chứng minh bất đẳng thức bằng phương pháp đạo hàmSáng kiến kinh nghiệm: Chứng minh bất đẳng thức bằng phương pháp đạo hàmSáng kiến kinh nghiệm: Chứng minh bất đẳng thức bằng phương pháp đạo hàmSáng kiến kinh nghiệm: Chứng minh bất đẳng thức bằng phương pháp đạo hàm

14 Đọc thêm

MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

2Suy ra điều phải chứng minh.Đẳng thức xảy ra khi và chỉ khi a  0, b  1, c  2 và các hoán vị.Nhận xét: Cái khó trong ví dụ này là đánh giá được bất đẳng thức (1). Ngoài cáchđánh giá như trên, để chứng minh (1) có thể dùng phương pháp dồn biến về biên.- 21 -Vậy là chúng ta đã[r]

115 Đọc thêm

Sáng kiến kinh nghiệm: Một số phương pháp chứng minh bất đẳng thức

SÁNG KIẾN KINH NGHIỆM: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

Trong nội dung của đề tài xin được tập trung giới thiệu một số phương pháp hay được sử dụng khi chứng minh bất đẳng thức như : dùng định nghĩa , biến đổi tương đương , dùng các bất đẳng thức đã biết , phương pháp phản chứng ……và một số bài tập vận dụng , nhằm giúp học sinh bớt lúng túng khi gặp các[r]

31 Đọc thêm

CHỨNG MINH BẤT ĐẲNG THỨC

CHỨNG MINH BẤT ĐẲNG THỨC

Tài liệu chứng minh nhiều dạng bất đẳng thức THPT tham khảo cho GV và HS

13 Đọc thêm

123DOC TU CHON CHUYEN DE BAT DANG THUC LOP 10

123DOC TU CHON CHUYEN DE BAT DANG THUC LOP 10

tập này cx kha khá các ae xem r ủng hộ nha

I. Định nghĩa bất đẳng thức: Bất đẳng thức là hai biểu thức nối với nhau bởi một trong
các dấu > , < , ≥, ≤ . Ta có: A ≥ B ÛA B ≥ 0. A > B A B > 0.
.Trong các bất đẳng thức A > B ( hoặc A < B , A ≥ B, A ≤ B ), A gọi là vế trái, B
gọi là vế phải của bất đ[r]

37 Đọc thêm

Các chủ đề về Bất đẳng thức Các định lý và cách chứng minh

CÁC CHỦ ĐỀ VỀ BẤT ĐẲNG THỨC CÁC ĐỊNH LÝ VÀ CÁCH CHỨNG MINH

Bất đẳng thức được sử dụng rộng rãi trong nhiều ngành toán học khác nhau. Từ toán hàn lâm cho đến các ngành toán ứng dụng trực tiếp. Có lẽ tài liệu Các định lý và cách chứng minh Bất đẳng thức của Nguyễn Ngọc Tiến là một viên ngọc trong rừng tài liệu bất đẳng thức mà các bạn đã từng đọc.
Các bạn sẽ[r]

88 Đọc thêm

CỰC TRỊ TRONG ĐẠI SỐ THCS

CỰC TRỊ TRONG ĐẠI SỐ THCS

= ... = n .b1 b2bnChứng minh bất đẳng thức Bouniakovski mở rộng có thể làm bằng ý tường tươngtự trong trường hợp m = 2 ,do đó phần này xin dành cho bạn đọc.Dấu bằng xảy ra khi và chỉ khiChú ý thêm với các bạn rằng trong trường hợp m là số tự nhiên chẵn thì ta có chocác dãy số thực là b[r]

10 Đọc thêm

Tài liệu về bất đẳng thức Côsi

TÀI LIỆU VỀ BẤT ĐẲNG THỨC CÔSI

Một số bài tập về bất đẳng thức Côsi dành cho học sinh THCS và THCS
Bất đẳng thức Cosi
Bài tập về bất đẳng thức
Cauchy
Bài tập bất đẳng thức
Ví dụ chứng minh bất đẳng thức
Bất đẳng thức
Bài tập về bất đẳng thức hay

1 Đọc thêm

SKKN về bất đẳng thức cô si ( Nguyễn Qốc Tuấn) CAP TINH

SKKN VỀ BẤT ĐẲNG THỨC CÔ SI ( NGUYỄN QỐC TUẤN) CAP TINH

Sáng kiến kinh nghiệm đạt cấp tỉnh. về BĐT cô si.
Phương pháp vậ dụng điểm rơi và bất đẳng thức cô si để tìm GTLN GTNN; Giải phương trình vô tỉ.
Chứng minh bất đẳng thức thông qua bất đẳng thức CÔ si

37 Đọc thêm

K2PI BAT DANG THUC

K2PI BAT DANG THUC

bình cộng của các số thực không âm và trung bình nhân của chúng.Cụ thể như sau:2.1Bất đẳng thức AM-GMĐịnh lí 2.1. (BĐT AM-GM) Cho n số thực không âm a 1 , a 2 , · · · , a n .ta cóa1 + a2 + · · · + a nnna1 · a2 · · · a nđẳng thức xảy ra khi a 1 = a 2 = · · · = a n .Chứng minh. Có nhiều[r]

51 Đọc thêm

CHUYEN DE BD HSG TOAN9

CHUYEN DE BD HSG TOAN9

CHUYÊN ĐỀ : BỒI DƯỠNG HS GIỎI VÀ NĂNG KHIẾU1Một số bài tập toán nâng caoLỚP 9PHẦN I: ĐỀ BÀI1. Chứng minh § là số vô tỉ.72. a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)3.[r]

62 Đọc thêm

CHUYEN DE BAT DANG THUC LOP 9

CHUYEN DE BAT DANG THUC LOP 9

Vậy BĐT (3)luôn đúng ta có (đpcm)23Sỏch gii Ngi thy ca bnhttp://sachgiai.com/Phương pháp 11:Chứng minh phản chứngLưu ý:1) Giả sử phải chứng minh bất đẳng thức nào đó đúng , ta hãy giả sử bất đẳng thứcđó sai và kết hợp với các giả thiết để suy ra điều vô lý , điều vô lý c[r]

38 Đọc thêm

CHUYÊN ĐỀ BẤT ĐẰNG THỨC ÔN THI THPT QUỐC GIA_ KĨ THUẬT CHỌN ĐIỂM RƠI

CHUYÊN ĐỀ BẤT ĐẰNG THỨC ÔN THI THPT QUỐC GIA_ KĨ THUẬT CHỌN ĐIỂM RƠI

A. MỘT SỐ QUY TẮC CHUNG KHI SỬ DỤNG BẤT ĐẲNG THỨCCAUCHY VÀ BẤT ĐẲNG THỨC BUNYAKOVSKI Quy tắc song hành: Đa số các bất đẳng thức đều có tính đối xứng nên chúng ta có thểsử dụng nhiều bất đẳng thức trong chứng minh một bài toán để định hướng cách giải nhanhhơn. Quy tắc dấu bằng: Dấu “=” trong bất đẳ[r]

63 Đọc thêm

skkn dat giai a tinh

SKKN DAT GIAI A TINH

PHẦN I. ĐẶT VẤN ĐỀ1. LÝ DO CHỌN ĐỀ TÀI. a. Cơ sở lí luận. Dạy toán là một hoạt động nghiên cứu về toán học của học sinh và giáo viên bao gồm day khái niệm, dạy định lý, giải toán..., trong đó giải toán là công việc quan trọng. Bởi giải toán là quá trình suy luận nhằm khám phá ra quan hệ lôgic giữ[r]

35 Đọc thêm

Chương IV bất đẳng thức và bất phương trình

CHƯƠNG IV BẤT ĐẲNG THỨC VÀ BẤT PHƯƠNG TRÌNH

A.Mục tiêu : Qua bài học học sinh cần nắm vững : 1. Về kiến thức và kỹ năng : Định nghĩa và các tính chất của bất đẳng thức Bất đẳng thức về giá trị tuyệt đối Các phương pháp chứng minh bất đẳng thức như : biến đổi tương đương , phản chứng , biến đổi hệ quả , sử dụng các bất đẳng thức cơ bản ....[r]

43 Đọc thêm

BẤT ĐẲNG THỨC COSI (PHẦN 5)-TRẦN PHƯƠNG

BẤT ĐẲNG THỨC COSI (PHẦN 5)-TRẦN PHƯƠNG

8. Cho a , b, c  0 th a mãn a  b  c  1 . Ch ng minh r ng: S = a 4 b  b4 c  c 4 a 2563125(a 2  bc)(b 2  ca ) (b 2  ca )(c 2  ab) (c 2  ab)(a 2  bc) 0.a bbcca18. Cho a , b, c, d &gt; 0 th a mãn a  b  c  d  4 . Ch ng minh r ng: a 2bc  b2cd  c 2 da  d 2ab  4.9. Cho a , b,[r]

1 Đọc thêm