KHÔNG GIAN MÊTRIC ÁNH XẠ LIÊN TỤC PDF

Tìm thấy 10,000 tài liệu liên quan tới từ khóa "KHÔNG GIAN MÊTRIC ÁNH XẠ LIÊN TỤC PDF":

ĐỊNH LÝ ĐIỂM BẤT ĐỘNG CHO MỘT SỐ ÁNH XẠ CO SUY RỘNG TRÊN CÁC KHÔNG GIAN KIỂU MÊTRIC VÀ ỨNG DỤNG TT

ĐỊNH LÝ ĐIỂM BẤT ĐỘNG CHO MỘT SỐ ÁNH XẠ CO SUY RỘNG TRÊN CÁC KHÔNG GIAN KIỂU MÊTRIC VÀ ỨNG DỤNG TT

của lý thuyết điểm bất động có thể nói bắt nguồn từ những ứng dụng rộng rãi của nó.1.2. Xuất phát từ ba định lý điểm bất động nổi tiếng: Định lý điểm bất động Brouwer(1911), định lý điểm bất động Banach (1922), định lý điểm bất động Tarski (1955), lýthuyết điểm bất động có thể được chia thành ba hướ[r]

27 Đọc thêm

 ĐIỂM BẤT ĐỘNG CHUNG CHO BA ÁNH XẠ

ĐIỂM BẤT ĐỘNG CHUNG CHO BA ÁNH XẠ

) 26= 0.Vì vậy, f và g là tơng thích yếu ngẫu nhiên, nhng không tơng thíchloại (A).1.2 Điểm bất động chung của ba ánh xạ1.2.1 Định lý. ([5]) Giả sử f, g và h là ba ánh xạ từ không gian mêtricđầy đủ (X, d) vào chính nó thoả mãn các điều kiện(i) f (X ) S g(X ) h(X );(ii) d(f x,[r]

47 Đọc thêm

Một số quy tắc tính toán trong giải tích biến phân và ứng dụng (FULL)

MỘT SỐ QUY TẮC TÍNH TOÁN TRONG GIẢI TÍCH BIẾN PHÂN VÀ ỨNG DỤNG (FULL)

Mục đích và đối tượng nghiên cứu của luận án

Luận án này nghiên cứu một số khía cạnh ứng dụng của các quy tắc tính toán trong giải tích biến phân với các mục đích như sau:

1. Tìm mối quan hệ giữa công thức tính nón pháp tuyến của tập nghịch ảnh qua ánh xạ khả vi, các quy tắc tổng v[r]

96 Đọc thêm

ĐỀ CƯƠNG MÔN HỌC GIẢI TÍCH HÀM

ĐỀ CƯƠNG MÔN HỌC GIẢI TÍCH HÀM

Nghiên cứu các không gian metric, ánh xạ liên tục, không gian đủ, không gian
compact và một ứng dụng của lý thuyết vào phương trình vi phân. Nghiên cứu các
không gian định chuẩn, không gian Hilbert, các toán tử tuyến tính liên tục giữa các
2
không gian đó, ba nguyên lý cơ bản của giải tích hàm, lý[r]

8 Đọc thêm

Tiểu luận mêtric Nikodym-chinh

TIỂU LUẬN MÊTRIC NIKODYM-CHINH

Không gian mêtric và lý thuyết độ đo, tích phân là một phần quan trọng trong lý thuyết hàm số biến số thực, chúng cùng với giải tích hàm làm nền tảng cho kiến thức toán học của sinh viên, giúp các sinh viên làm quen và nắm được khái niệm, tính chất giới hạn, liên tục, đạo hàm, tích phân… Đặc biệt là[r]

26 Đọc thêm

CHUONG 4 KHÔNG GIAN COMPACT

CHUONG 4 KHÔNG GIAN COMPACT

x n  Px n1 ,mà x n  x, Px n1  Px vì (Px n1 , Px)   ( xn1 , x)  0 Vậy Px = x, nghĩa x là một điểm bất động. Nếuy cũng là điểm bất động thì  ( x, y)   ( Px, Py)   ( x, y) . Vì   1 nên ( x, y)  0 ,tức x = y. Vậy x là điểm bất động duy nhất.Bài tập :1, cho f : X -&gt; X là <[r]

16 Đọc thêm

NHÚNG HYPERBOLIC CỦA KHÔNG GIAN PHỨC

NHÚNG HYPERBOLIC CỦA KHÔNG GIAN PHỨC

Hệ thống lại một số kết quả đã biết về tính hyperbolic. Nghiên cứunhúng hyperbolic, một số dấu hiệu để nhận biết tính nhúng hyperboliccủa một không gian con phức trong một không gian ban đầu và ứngdụng của nó trong việc thác triển liên tục ánh xạ chỉnh hình.54. Đối tượng[r]

55 Đọc thêm

Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học

ĐIỂM BẤT ĐỘNG CHO CÁC ÁNH XẠ TƯƠNG THÍCH YẾU TRONG KHÔNG GIAN METRIC MỜ LUẬN VĂN THẠC SĨ TOÁN HỌC

Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học
Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học
Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học

64 Đọc thêm

Giáo trình Toán cao cấp tập 1 Nguyễn Đình Trí

GIÁO TRÌNH TOÁN CAO CẤP TẬP 1 NGUYỄN ĐÌNH TRÍ

Giáo trình toán học cao cấp. Tác giả Nguyễn Đình Trí NXB Giao Dục. Được dùng trong các trường đại học và cao đẳng Tập 1 :Tập hợp và ánh xạ. Số thực và số phức. Hà số một biến. Giới hạn và liên tục. Đạo hàm và vi phân. Các định lý về giá trị trung bình và ứng dụng. Định thứcma trận. Hệ phương trình t[r]

273 Đọc thêm

ĐỀ CƯƠNG MÔN HỌC PHÉP TÍNH BIẾN PHÂN

ĐỀ CƯƠNG MÔN HỌC PHÉP TÍNH BIẾN PHÂN

Vi phân của ánh xạ trong không gian Banacs
Cách đặt bài toán cực trị, phương trình Euler – Lagrange
2
Bài toán cực trị phiếm hàm: Điều kiện bức (Coereive), tính nửa liên tục dưới yếu
của phiếm hàm. Bài toán cực trị có điều kiện. Nguyên lý Minimax, lý thuyết điểm
tới hạn. Các ứng dụng

5 Đọc thêm

TÍNH LIÊN TỤC HOLDER CỦA NGHIỆM VÀ ĐẶT CHỈNH HOLDER CỦA BÀI TOÁN CÂN BẰNG

TÍNH LIÊN TỤC HOLDER CỦA NGHIỆM VÀ ĐẶT CHỈNH HOLDER CỦA BÀI TOÁN CÂN BẰNG

Chương 4Tính đặt chỉnh H¨older của bài toáncân bằngTrong chương này, ta trình bày tính đặt chỉnh H¨older của bài toán vôhướng và mở rộng ra cho bài toán tựa cân bằng véc tơ. Ta giả sử rằng tậpnghiệm của các bài toán luôn khác rỗng trong lân cận của điểm đang xét.4.1Tính đặt chỉnh H¨older của bài toá[r]

27 Đọc thêm

TINH CHINH QUY METRIC VA LUAT FERMAT CHO BAI TOAN TOI UU DA TRI

TINH CHINH QUY METRIC VA LUAT FERMAT CHO BAI TOAN TOI UU DA TRI

chinh quy metric
Tính chính quy mê tric là một trong những tính chất quan
trọng của ánh xạ đa trị, thu hút đượ c sự quan tâm nghiên cứu
của nhiều nhà toán họ c trên thế giới. Hiện nay, kết quả đạt đượ c
theo hướng này là rất ph on g phú và đa dạng.
Tính chín h quy mêtric có nguồn gố c trong Nguyên l[r]

71 Đọc thêm

LUAN VAN TOAN GIAI TICH

LUAN VAN TOAN GIAI TICH

4.Đưa ra và chứng minh chi tiết một số kết quả về sự tồn tại điểm bất động đối với các ánh xạ trên các không gian G-mêtric đầy đủ đó là Định lý 2.1.8 và chỉ ra rằng các kết quả này là tổ[r]

44 Đọc thêm

KHÔNG GIAN ĐỊNH CHUẨN - ÁNH XẠ TUYẾN TÍNH LIÊN LỤC

KHÔNG GIAN ĐỊNH CHUẨN - ÁNH XẠ TUYẾN TÍNH LIÊN LỤC

Do đó, một kgvt con hữu hạn chiều của một kgđc là tập đóng trong không gian đó.. 5 CHUỖI TRONG KGĐC Nhờ có phép toán cộng và lấy giới hạn, trong kgđc ta có thể đưa ra khái niệm chuỗi phầ[r]

10 Đọc thêm

ÁNH XẠ NGHIỆM CỦA BẤT ĐẲNG THỨC BIẾN PHÂN PHỤ THUỘC THAM SỐ

ÁNH XẠ NGHIỆM CỦA BẤT ĐẲNG THỨC BIẾN PHÂN PHỤ THUỘC THAM SỐ

• Mỗi toán tử tuyến tính liên tục A trong không gian Hilbert X xácđịnh theo f (x, y) = (Ax, y) một phiếm hàm song tuyến tính liêntục f (x, y) nghiệm đúng f = A .Ngược lại bất kỳ phiếm hàm song tuyến tính liên tục f (x, y) nàotrên X cũng có thể biểu diễn duy nhất dưới dạng f (x,[r]

54 Đọc thêm