của lý thuyết điểm bất động có thể nói bắt nguồn từ những ứng dụng rộng rãi của nó.1.2. Xuất phát từ ba định lý điểm bất động nổi tiếng: Định lý điểm bất động Brouwer(1911), định lý điểm bất động Banach (1922), định lý điểm bất động Tarski (1955), lýthuyết điểm bất động có thể được chia thành ba hướ[r]
) 26= 0.Vì vậy, f và g là tơng thích yếu ngẫu nhiên, nhng không tơng thíchloại (A).1.2 Điểm bất động chung của ba ánh xạ1.2.1 Định lý. ([5]) Giả sử f, g và h là ba ánh xạ từ không gian mêtricđầy đủ (X, d) vào chính nó thoả mãn các điều kiện(i) f (X ) S g(X ) h(X );(ii) d(f x,[r]
Nghiên cứu các không gian metric, ánh xạ liên tục, không gian đủ, không gian compact và một ứng dụng của lý thuyết vào phương trình vi phân. Nghiên cứu các không gian định chuẩn, không gian Hilbert, các toán tử tuyến tính liên tục giữa các 2 không gian đó, ba nguyên lý cơ bản của giải tích hàm, lý[r]
Không gian mêtric và lý thuyết độ đo, tích phân là một phần quan trọng trong lý thuyết hàm số biến số thực, chúng cùng với giải tích hàm làm nền tảng cho kiến thức toán học của sinh viên, giúp các sinh viên làm quen và nắm được khái niệm, tính chất giới hạn, liên tục, đạo hàm, tích phân… Đặc biệt là[r]
x n Px n1 ,mà x n x, Px n1 Px vì (Px n1 , Px) ( xn1 , x) 0 Vậy Px = x, nghĩa x là một điểm bất động. Nếuy cũng là điểm bất động thì ( x, y) ( Px, Py) ( x, y) . Vì 1 nên ( x, y) 0 ,tức x = y. Vậy x là điểm bất động duy nhất.Bài tập :1, cho f : X -> X là <[r]
Hệ thống lại một số kết quả đã biết về tính hyperbolic. Nghiên cứunhúng hyperbolic, một số dấu hiệu để nhận biết tính nhúng hyperboliccủa một không gian con phức trong một không gian ban đầu và ứngdụng của nó trong việc thác triển liên tục ánh xạ chỉnh hình.54. Đối tượng[r]
Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học Điểm bất động cho các ánh xạ tương thích yếu trong không gian Metric mờ luận văn thạc sĩ toán học
Giáo trình toán học cao cấp. Tác giả Nguyễn Đình Trí NXB Giao Dục. Được dùng trong các trường đại học và cao đẳng Tập 1 :Tập hợp và ánh xạ. Số thực và số phức. Hà số một biến. Giới hạn và liên tục. Đạo hàm và vi phân. Các định lý về giá trị trung bình và ứng dụng. Định thứcma trận. Hệ phương trình t[r]
Vi phân của ánh xạ trong không gian Banacs Cách đặt bài toán cực trị, phương trình Euler – Lagrange 2 Bài toán cực trị phiếm hàm: Điều kiện bức (Coereive), tính nửa liên tục dưới yếu của phiếm hàm. Bài toán cực trị có điều kiện. Nguyên lý Minimax, lý thuyết điểm tới hạn. Các ứng dụng
Chương 4Tính đặt chỉnh H¨older của bài toáncân bằngTrong chương này, ta trình bày tính đặt chỉnh H¨older của bài toán vôhướng và mở rộng ra cho bài toán tựa cân bằng véc tơ. Ta giả sử rằng tậpnghiệm của các bài toán luôn khác rỗng trong lân cận của điểm đang xét.4.1Tính đặt chỉnh H¨older của bài toá[r]
chinh quy metric Tính chính quy mê tric là một trong những tính chất quan trọng của ánh xạ đa trị, thu hút đượ c sự quan tâm nghiên cứu của nhiều nhà toán họ c trên thế giới. Hiện nay, kết quả đạt đượ c theo hướng này là rất ph on g phú và đa dạng. Tính chín h quy mêtric có nguồn gố c trong Nguyên l[r]
4.Đưa ra và chứng minh chi tiết một số kết quả về sự tồn tại điểm bất động đối với các ánh xạ trên các không gian G-mêtric đầy đủ đó là Định lý 2.1.8 và chỉ ra rằng các kết quả này là tổ[r]
Do đó, một kgvt con hữu hạn chiều của một kgđc là tập đóng trong không gian đó.. 5 CHUỖI TRONG KGĐC Nhờ có phép toán cộng và lấy giới hạn, trong kgđc ta có thể đưa ra khái niệm chuỗi phầ[r]
• Mỗi toán tử tuyến tính liên tục A trong không gian Hilbert X xácđịnh theo f (x, y) = (Ax, y) một phiếm hàm song tuyến tính liêntục f (x, y) nghiệm đúng f = A .Ngược lại bất kỳ phiếm hàm song tuyến tính liên tục f (x, y) nàotrên X cũng có thể biểu diễn duy nhất dưới dạng f (x,[r]